Estimation-based synthesis of H∞-optimal adaptive FIR filters for filtered-LMS problems
نویسندگان
چکیده
This paper presents a systematic synthesis procedure for -optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal.
منابع مشابه
Multichannel active noise control algorithms using inverse filters
1.0 Introduction For active noise control (ANC) systems, a common approach is to use adaptive FIR filters trained with the filtered-x LMS algorithm [1], for both feedforward systems and Internal Model Control (IMC) feedback systems, in monochannel or multichannel systems. Variations of the algorithm sometimes called the modified filtered-x LMS algorithm have been published [2], which can achiev...
متن کاملThe Ultra High Speed LMS Algorithm Implemented on Parallel Architecture Suitable for Multidimensional Adaptive Filtering
Over the past decades a number of new adaptive filter algorithms have been elaborated and applied to meet demands for faster convergence and better tracking properties than earlier techniques could offer. The Filtered LMS algorithm is currently the most popular method for adapting a filter, due to its simplicity and robustness, which have made it widely adopted in many applications. Application...
متن کاملDesing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions
In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...
متن کاملDesing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions
In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...
متن کاملAn Evolutionary Computation Embedded IIR LMS Algorithm
An improved Infinite Impulse Response (IIR) Least Mean Squares (LMS) algorithm using parallel filters and evolutionary programming techniques is introduced. IIR filters have the attractive property that they require fewer computations than a corresponding FIR filter, but they are prone to instability and local minimum problems. Evolutionary algorithms are good in global optimization scenarios, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2001